Table of Contents

Introduction
- General Description .. 1
- Parts Included ... 1
- Description of Controls, Indicators, and Connectors .. 2
- Controller Dimensions .. 3
- Hardware Specifications ... 3

Getting Started ... 4
- Cable Connections ... 4
- Installing the Graphical User Interface (GUI) Software .. 4
- Establishing Communication .. 4

Features of the Graphical User Interface ... 6
- Main Screen ... 6
- Program Screen ... 8
- About Screen .. 9
- Graph Screen ... 10

Creating and Running Temperature Programs .. 11
- Initialization ... 11
- Program Modification ... 11
- Starting and Running the Program .. 12
- Enabling/Disabling Channels ... 14

Exiting the GUI Application .. 15

Appendix A: Digital I/O Control .. 16

Appendix B: Basic FTP Operation via Serial Commands .. 17
- Establishing Serial Communication .. 17
- Serial Communication Protocols .. 18
- Partial List of Serial Commands ... 19
- Creating a Basic Temperature Program ... 20
- Interpreting the Data Log .. 23

Appendix C: Part Number Examples .. 24

Warranty .. 27
FTP Part Number Guide

FTP - 2 - 1

Power cord
0 - US
1 - EU
2 - No cord

Options
0 - Enclosure, power supply
1 - Enclosure, no power supply
2 - No enclosure, no power supply
3 - No enclosure, power supply

Modules 2 to 4
0 - No module
1 - Thermocouple
2 - RTD 100
3 - RTD 1000
Introduction

Please read the manual completely before using the VICI Fast Temperature Programmer Model 200 (FTP-200).

The columns or heated zones controlled by the FTP-200 will be heated very rapidly to a very high temperature (450°C). Do not touch the columns at any time the FTP-200 is on. Do not handle the column unless the FTP-200 has been turned off for at least 15 minutes, and then use caution.

General Description

The FTP-200 (Fast Temperature Programmer) is a highly-configurable temperature controller with as many as four channels that can be programmed to ramp independently or simultaneously. The zones use a temperature-predictive algorithm and thermocouple or RTD input for precise control of multiple columns or related transfer lines, injector, etc. The controller operates at a high frequency, allowing precise control of ramping rates as high as 1500°C per minute.

The primary channel, specifically designed for precision temperature programming of low mass nickel-clad or nickel-wire columns, can utilize the nickel as both the heating element and the temperature sensor. This reduces the mass of the column, reduces the lag time between target temperature and actual temperature, and enables the use of a safe, low voltage to heat the column. A small K-type thermocouple will also allow rapid temperature ramping, since it has very little mass.

For each channel, eight programmable states can be set for temperature, ramp rate, and duration. A small fan can be used to cool the column to the starting temperature. (Fans must be ordered separately.)

A graphical user interface, or GUI, (page 6) provides user-friendly programming and data reporting. For users who prefer basic operation with raw data, control via a set of serial commands is accomplished via a terminal emulation or communication software running on a PC-compatible computer (page 7).

Parts Included

The FTP system has many variables, starting with the number of modules and their functions. Beyond that, is it with or without an enclosure, and with or without a power supply? Does it come with a US power cord, a European power cord, or no power cord at all? All of these specifications will have been determined at the time of ordering, and are reflected in the FTP part number. (See chart at left.)

Columns and fans are sold separately, and are not reflected in the FTP part numbering system.

Please consult VICI technical support for assistance before making any changes to the FTP configuration. This includes installing new columns or fans.
Description of Controls, Indicators, and Connectors

1. ZONE connectors
 Each of the zones has clearly grouped connectors for Sense, Digital I/O, and Fan. Depending on the unit specified, your FTP is constructed with 1, 2, 3, or 4 zones.

2. SENSE (and power) connectors for Zones 1 to 4
 For Zone 1, the two functions are incorporated into one connector. For Zones 2-4, there are separate connections for power and for a thermocouple.

3. OUT connectors
 These connectors supply power to the heated devices.

4. Fan connectors
 Each zone has provision for it's own fan or cooling mechanism; however, only the Zone 1 fan is implemented.

5. 48VDC power connector
 The 4' cable from the 48 VDC power supply is plugged into this connector.

6. ON/off switch
 This is the main power switch for the FTP system. When the switch is in the off position, there is no power to the column, fans, or heaters.

7. Digital I/O connector
 This connector provides two digital inputs and four digital output signals. Refer to “Appendix A: Digital I/O Control” on page 16.

8. ON indicator
 This green LED will be illuminated when power is connected to the unit and the power switch is on.

9. RS 232 connector
 The FTP-200 connects to a PC via a standard DE9 extension cable (M-F). This DE-9F connector conforms to EIA-232C standard pin-outs for a DCE device.
Controller Dimensions

![Controller Dimensions](image)

Figure 2: FTP-200 controller dimensions

Hardware Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Nominal</th>
<th>Maximum</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller input voltage</td>
<td>44</td>
<td>48</td>
<td>55</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Controller input current</td>
<td>0.1</td>
<td>10</td>
<td>A(DC)</td>
<td>Max current with power supply is 6.45A</td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>0</td>
<td>40</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-25</td>
<td>70</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>0</td>
<td>95</td>
<td>%</td>
<td></td>
<td>Non-condensing</td>
</tr>
<tr>
<td>Output voltage</td>
<td>0</td>
<td>46</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak output current</td>
<td>0</td>
<td>6.25</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous current/channel</td>
<td>0</td>
<td>5</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programmable ramp rate</td>
<td>1</td>
<td>1500</td>
<td>°C/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heating power</td>
<td>500</td>
<td>1000</td>
<td>W</td>
<td></td>
<td>All zones power supply max 310W</td>
</tr>
<tr>
<td>Digital outputs impedance</td>
<td>60</td>
<td>150</td>
<td>Ω</td>
<td>Contact closure</td>
<td></td>
</tr>
<tr>
<td>Digital output max voltage</td>
<td>5</td>
<td>24</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital output current</td>
<td>10</td>
<td>200</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital input</td>
<td>0</td>
<td>450</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD temperature</td>
<td>0</td>
<td>450</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermocouple temperature</td>
<td>0</td>
<td>400</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wire sensing resistance</td>
<td>2</td>
<td>20</td>
<td>Ω</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Nominal</th>
<th>Maximum</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>90</td>
<td>264</td>
<td>VAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input frequency</td>
<td>47</td>
<td>63</td>
<td>Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input current</td>
<td>5</td>
<td>A</td>
<td>At 115 VAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>A</td>
<td>At 230 VAC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Hardware specifications
Getting Started

Cable Connections

This example uses a relatively basic two channel controller with a column and fan on Zone 1 and a transfer line on Zone 2. Refer to Figure 1 as necessary.

1. Plug the column connectors (power/sensing and fan) into the Zone 1 connectors on the controller.
2. Plug the transfer line connectors (power and thermocouple) into the Zone 2 connectors.
3. Connect the RS-232 cable to the COM port on the PC and the connector on the rear of the controller.
4. Plug the 4’ cable from the 48 VDC power supply into the connector labeled 48VDC on the front of the controller, then plug the power supply into the 110 or 230 VAC source.

Installing the Graphical User Interface (GUI) Software

If you prefer to program and operate the FTP-200 via console port commands instead of the GUI, refer to “Appendix B: Basic FTP Operation using Serial Commands” on page 17.

A PC/Laptop running Microsoft Windows 7/8/10 is required to use the FTP-200 Graphical User Interface (GUI) program. The computer will also need a serial communication (COM) port to communicate with the controller.

Locate the FTP-200 software installer program on the USB key provided with the FTP-200 and run the setup.exe file. The self-extracting installer will automatically install two programs in addition to the GUI—Labview Runtime Engine and Labview VISA Runtime Engine. These applications are from National Instruments and are required in order to run the GUI.

Establishing Communication

1. Turn on the FTP-200 with the on/off switch on the front panel.
2. Find FTP Control GUI on the Windows Start menu and click to open

Figure 3: The GUI is attempting to establish communication with the FTP controller
5. After the splash screen, the screen in **Figure 3** will appear.

3. If the window shown in **Figure 4** appears, check the cable connections and make sure that the FTP is turned on.

4. When the FTP is found, the data from the controller is downloaded into the PC and the GUI is initialized. (**Figure 5**) If communication is lost between the PC and the FTP, a new search routine will be automatically initiated. (**Figure 6**) If the controller is still powered on, this method should restore communication. If it does not, contact the factory.
Features of the Graphical User Interface

Main Screen

After the GUI is initialized, the Main screen (Figure 7) will appear when the software is opened.

1. **Enabled?** buttons
 Select which channels will have active connected devices controlled by the FTP.

2. **Channel** display fields
 These fields display the name of the device connected to each of the FTP’s active channels. The names are assigned at the factory, depending on the devices specified when the FTP is ordered. An empty field indicates that nothing is connected.

3. **Temperature** display fields
 The fields display actual measured temperatures. In this example, the Channels 1 and 2 boxes indicate the actual measured temperature of the connected devices. A value of -1.00 °C indicates either that there is no device connected, or a device is present but not enabled. (See item 1.)

4. **Set Point** display fields.
 The temperature set points are entered on the Modify Programs screen (page 11).

5. **Ready** LEDs
 When a channel is ready to execute a temperature program, its Ready LED lights up.

6. **Running** LEDs
 When a channel is executing a temperature program, its Running LED lights up.

7. **Power** display field
 This shows the percentage of total output capacity that the controller is providing to each individual channel.
8. **COMM LED**
 This LED is green when on the device is “talking to” the PC.

9. **Digital Line Out LEDs**
 A green LED indicates which contact closure output is currently active.

10. **Data Received display field**
 This line displays the continuous data string received from the controller.

11. **Cancel buttons**
 When a temperature program is running on a channel, the corresponding button will be active. Clicking it aborts the temperature program.

12. **Initialize button**
 Clicking this initializes all enabled channels to their starting temperature set points.

13. **Advanced MPC Control button**
 Clicking this opens access to advanced controller setup features. These commands are only intended for advanced users, in consultation with factory support.

CAUTION:
Changing values in the Advanced Controller Setup windows can damage attached devices and/or the controller.

14. **GO ALL Ready Zones button**
 Clicking this starts the temperature program on all enabled and ready channels. It is not active while a program is executing.

15. **Modify Programs button**
 Click this to open the Temperature Program screen, which allows modification to each individual temperature program. *(Refer to page 8.)*

16. **FAN OFF/ON button**
 When the enabled channels are not initialized, this button can be used to turn the Channel 1 fan on and off.

17. **About Screen button**
 Click to opens the About screen. *(Refer to page 9.)*

18. **Show Graph button**
 Click to show a real time Graph screen. *(Refer to page 10.)*

19. **Exit Application button**
 Click to exits the application.
Program Screen

The Program screen (Figure 8) is accessed by clicking the Modify Programs button on the Main screen (Figure 7).

1. **Program Channel** input fields (Figure 9)
 Each channel can be programmed to eight different temperature states. The first state is always enabled. Programming State 1 and leaving the rest inactive maintains the temperature constant, even when the other channels are ramping.
 a. **State 1 Ramp Rate** input field
 This field should be ignored, since the ramping rate from an unitialized state to the initialized state is determined by factory settings stored in the device's memory.
 b. **State 1 End Temp** input field
 The ending temperature of State 1 is also the initial temperature of the controller program.
 c. **State 1 Hold Time** input field
 The time (in seconds) that the controller will maintain the ending temperature before moving to the next active state. If no other state is active, it will remain at this temperature.
 d. **State 1 Active?** LED
 The first state is always active. This LED will not toggle to an inactive state.
 e. **States 2 to 8 Active?** LEDs
 Clicking on the LED will toggle the state from Active (LED on, as in States 1 and 2) to inactive (LED off, as in State 3).
 f. **States 2 to 8 Hold Time** input fields
 This is the user-settable time (in seconds) that the end temperature will be held before the next active state begins.
 g. **States 2 to 8 End Temp** input fields
 Enter the ending temperature for each active state in these fields.
h. States 2 to 8 Ramp Rate input fields
 The ramp rate is how fast the controller will reach the state’s End Temp. This can range from 1°C/minute to 1500°C/minute depending on the device’s capacity.

2. COMM LED
 This LED is green when on the device is “talking to” the PC.

3. Total Time display fields
 These fields—one for each channel—indicate the total run time for the channel’s temperature program.

4. Replicate Channel 1 button
 Clicking this button will cause the temperature programs for channels 2, 3, and 4 to be replaced with the temperature program of channel 1.

5. Data Received display field
 This line displays the continuous data string received from the controller.

6. Back to Main Screen button
 Click this button to return to the main screen without any changes being saved.

7. Update Temp Program button
 When this button is clicked, updates to the temperature programs are saved into the non-volatile memory. The programs will still be active even after the controller is powered off and back on.

About Screen

The About screen (Figure 10) is accessed by clicking the About Screen button on the Main screen (Figure 7).

- **System Information** display field
 This field displays the controller firmware version, serial number, and date of installation.

- **Channel 1** display field
 Information about the installed column is provided here.

- **Data Received** display field
 This line displays the continuous data string received from the controller.

- **COMM LED**
 This LED is green when on the device is “talking to” the PC.

- **Channels 2 to 4** display field
 Information about installed devices is provided here.

- **Back to Main Screen** button
 Click this button to return to the main screen.
Graph Screen

Click the Show Graph button on the Main screen to open the Graph screen (Figure 11).

![Figure 11: Graph screen of the FTP GUI](image)

1. **Primary scale**
 This scale indicates the temperature of enabled plots.

2. **Secondary scale**
 The secondary scale is in units of current, voltage, or resistance, depending on which plot is selected. These values are always autoscaled; that is, the scale is adjusted so that all the data fits on the screen.

3. **COMM LED**
 This LED is green when on the device is “talking to” the PC.

4. **Graph list and check boxes**
 Check a box to select the graphs to be displayed. A couple of these require explanation.
 a. **PWM**
 PWM (Pulse Width Modulator) has a direct correlation with the output power of each zone, and is mostly used as a troubleshooting tool.
 b. **Target Temp**
 The Target Temp is the precisely-calculated temperature that the device should register at any given moment in order to reach the final temperature at the specified ramp rate. The target temperature is calculated approximately 200 times per second.

5. **Fan Mode** input field
 Enter the maximum voltage percent applied to the channel 1 fan during wait mode.

6. **Data Received** display field
 This line displays the continuous data string received from the controller.

7. **Power gauge**
 The gauge shows current power usage (blue) and the maximum power required during a run (red).

8. **Autoscale** button (primary scale)
 When autoscale is enabled, the left scale changes as required to fit all the available data on the screen. (The secondary scale is always autoscaled.)

9. **Reset Graph** button
 Click this button to clear the graph area.

10. **Back to Main Screen** button
 Click this button to return to the Main screen.
Creating and Running Temperature Programs

Initialization

In the example Main screen in Figure 12, two channels are enabled—one for the column and one for a transfer line.

1. Click the "OFF" button under "Initialize" to begin the initialization process.
2. When initialization is complete, the "OFF" button will turn green and say "Initialized".

Program Modification

1. Click the "Modify Programs" button on the Main screen to open the Program screen shown in Figure 13.
2. For this example, enter a value of 750°C in the Channel 1, State 2 ramp rate field.
3. Click the "Update Temp Program" to save changes and return to the main screen (Figure 14).
Starting and Running the Program

1. When both enabled channels are ready to start (indicated by the Ready LEDs turning green), start the program by clicking the “GO ALL Ready Zones” button.

2. The green LEDs in Figure 15 indicate that the controller is running the programs for Channels 1 and 2. Click the “Show Graph” button to open the Graph screen (Figure 16).

3. When you wish to return from the Graph screen to the Main screen, click the “Back to Main Screen” button.
The Main screen in Figure 17 indicates that the fan is running. This means that the State 2 temperature was reached and then maintained for the programmed hold time. At that point, the fan comes on to cool the devices to their State 1 temperatures so that another run can start.

Figure 16: The Graph screen showing current temperatures for the column and transfer line and the resistance of the column heater

Figure 17: The Main screen at the end of one run, approaching a ready state for the next one
Enabling/Disabling Channels

1. Click the green “Initialize” button to shift the FTP into an unmanaged mode, which allows channel status to be changed.

2. Click the Channel 2 “Enabled?” button to disable the channel.

3. Click the “Initialize” button (which now says “Off”) to re-initialize Channel 1.

4. When Channel 1 is ready (Figure 20), start the program for Channel 1 by clicking the “GO ALL Ready Zones” button.

5. Click the “Show Graph” button to view the graph for the program running on Channel 1 (Figure 21).
Exiting the GUI Application

The GUI software can be closed at any time by clicking the “Exit Application” button on the Main screen. When the GUI is closed, the controller retains the state it was in while the GUI was running; that is, if it was ramping, it will continue to ramp.
Appendix A: Digital I/O Control

The FTP controller provides digital signals for monitoring and control of the system. Note that entering system parameters such as temperature programming data require a serial link to set. After system parameters are set, the FTP can act in a stand-alone mode.

Digital I/O Port

The Digital I/O port is on the front panel of the FTP controller. This 14-position male header (2x7) with .1” row spacing contains two digital input signals and four digital output signals.

<table>
<thead>
<tr>
<th>Pins</th>
<th>Function</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input 1</td>
<td>1 and 2 Start zone, start program</td>
<td>If the controller is in idle mode, activating this input will start the zone for all active channels. A second trigger will start the program only if the controller is ready to start.</td>
</tr>
<tr>
<td>Input 2</td>
<td>3 and 4 Abort program while running</td>
<td>Triggering this input aborts the currently-running program and returns the zones to their holding temperatures.</td>
</tr>
<tr>
<td>Output 1</td>
<td>5 and 6 Program is running</td>
<td>The contact is closed when the program is running.</td>
</tr>
<tr>
<td>Output 2</td>
<td>7 and 8 Error</td>
<td>The contact is closed when the controller senses an error. The error is cleared when power is cycled off and back on, or when the controller is reset.</td>
</tr>
<tr>
<td>Output 3</td>
<td>9 and 10 Fan is running</td>
<td>The contact is closed when the fan is running after a program.</td>
</tr>
<tr>
<td>Output 4</td>
<td>11 and 12 Ready to run program</td>
<td>The contact is closed when all the active zones are ready.</td>
</tr>
<tr>
<td></td>
<td>13 and 14 Unassigned</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Digital I/O port pin assignments and functions
Appendix B: Basic FTP Operation via Serial Commands

NOTE: For more thorough documentation of the serial control possibilities designed into the FTP controller, contact VICI technical support.

Establishing Serial Communication

Serial communication must be established with the FTP controller to set system parameters. The interface is available by means of a RS-232C link. Once established, the serial communications link can be used either through a direct command console terminal, or by the provided Graphical User Interface (GUI).

Serial communication requires a terminal emulation or communication software (such as Tera Term, PuTTY, Qodem, Procomm Plus, etc.) Though the programs vary, in general you will be asked to select “Serial” from among various types of connections, select the COM port which will be used for the FTP, name the connection, and set some parameters; set the serial port at 115200 BAUD, using 8 data bits, no parity bits, 1 stop bit, and hardware flow control.

Confirming Communication

With the software running, and all the cables connected as described on page 4, turn the On/Off switch on the controller to the ON position. If the link is functioning, the following information will appear on your monitor. This message lists the unit designation, the firmware and hardware revisions, and the unit serial number.

FTP-200 Valco Instruments Co. Inc.

Zone 1:
 Column Id: Dummy1234
 Max Volt: 48.00 [V]
 Max Current: 4.60 [A]
 30.000[C] 4.853[r]
 165.000[C] 8.754[r]
 300.000[C] 14.161[r]
 0.000[C] 0.000[r]

 R(T) = 4.13200E-05 * T^2 + 2.08400E-02 * T + 4.19100E+00

Zone2: TF007, 45.6 [V]
Zone3: Not Present or Memory Error
Zone4: Not Present or Memory Error

Memory Initialized: OK
 VCal = + 9.9945E+01 * V - 7.7802E-04
 ICal = + 1.2450E+01 * I + 1.7525E-04

Temperature Programs: Loaded

Controller Input - Output Mapping:
 Zone 1: mapped to Wire-Sensing Input
 Zone 2: mapped to Thermal Sense 2
 Zone 3: mapped to Thermal Sense 3
 Zone 4: mapped to Thermal Sense 4
Zone1 Enabled
Zone2 Enabled
Zone3 Disabled
Zone4 Disabled

Sense Module 1: Thermocouple
Sense Module 2: Thermocouple
Sense Module 3: Thermocouple
Sense Module 4: Thermocouple

Serial Communication Protocols

General Console Port Usage

- Commands issued to the FTP must be terminated with a carriage return character (<CR>). (When using a terminal program for communications, pressing the <enter> key generates the carriage return character.)
- Space characters are used to separate commands and operands in command sequences. Other whitespace characters are ignored by the parser, including tab (<TAB>) and linefeed (<LF>) characters.
- Only printable ASCII characters are accepted by the FTP parser. (In other words, terminal control characters and extended ASCII characters are ignored.)
- Response lines from the FTP will be terminated with a carriage return/linefeed (<CR><LF>) sequence.
- Commands to the FTP unit are not case sensitive.
- The FTP uses VT100 escape sequences for cursor and terminal control.
- Any characters on the input line after the final valid parameter could generate an error.
- A maximum of 124 characters are permitted in a single command line.

Interface Command Editing:

- Use the Escape key (<ESC>) to delete the current command line.
- The Backspace key (<BS>) deletes the previous character on the command line.
- The left and right arrow keys may be used to navigate the cursor within the current command line text.
- Hitting the <enter> key repeats the previous command.
Partial List of Serial Commands

The FTP uses a simple two character pneumonic command structure. Each command must be followed by the <enter> key. Several of the commands are read/set commands; that is, entering the two character command alone asks the FTP to read and respond with the current setting. Entering the two character command followed by a value sets the parameter at that value.

Examples:
To enable channel 2, type **OE21** and press <enter>.
To disable channel 2, type **OE20** and press <enter>.
To make channel 1 active for programming, type **CD1** and press <enter>.

The most typically used commands are detailed below. Most of the commands not included on this list are for advanced applications only, and can interfere with proper operation of the controller if used inappropriately.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD[n]</td>
<td>Sets channel (n=1-4) as the active channel</td>
</tr>
<tr>
<td>SS[n]</td>
<td>Set state parameters for active channel (n=1-4)</td>
</tr>
<tr>
<td>L+</td>
<td>Start Logging</td>
</tr>
<tr>
<td>L-</td>
<td>Stop Logging</td>
</tr>
<tr>
<td>Z+</td>
<td>Initialize enabled channels</td>
</tr>
<tr>
<td>Z-</td>
<td>Return enabled channel to uncontrolled state</td>
</tr>
<tr>
<td>WP</td>
<td>Save parameters</td>
</tr>
<tr>
<td>GO[n]</td>
<td>Start channel (n=1-4 or A for all channels)</td>
</tr>
<tr>
<td>ES[n]</td>
<td>Set state parameters [State, HoldTime, HoldTemp, RampRate, Enable]</td>
</tr>
<tr>
<td>F+</td>
<td>Turn on the fan</td>
</tr>
<tr>
<td>F-</td>
<td>Turn off the fan</td>
</tr>
<tr>
<td>FM[n]</td>
<td>Set the maximum voltage percent (n=0-100) applied to the channel 1 fan during wait mode. Used to help maintain column starting temp when there is heat transfer from external sources (like transfer lines).</td>
</tr>
<tr>
<td>ID</td>
<td>Display channels stats</td>
</tr>
<tr>
<td>OE[nn]</td>
<td>Enable (n=1) or disable (n=0) channel (n=1-4)</td>
</tr>
<tr>
<td>OM</td>
<td>Verify input/output channel mapping</td>
</tr>
<tr>
<td>RS[n]</td>
<td>Cancel the program running on channel (n=1-4)</td>
</tr>
<tr>
<td>VR</td>
<td>Display version number</td>
</tr>
<tr>
<td>??</td>
<td>Show entire list of commands</td>
</tr>
</tbody>
</table>
Creating a Basic Temperature Program

In this simple example, channels 1 and 2 will be enabled while channels 3 and 4 are disabled. After some temperature and ramp rate details are entered, the information will be verified and saved before logging is turned on and the program is started.

Enable Channels 1 and 2, Disable Channels 3 and 4
1. Type OE11<enter> to enable zone 1.
2. Type OE21<enter> to enable zone 2.
3. Type OE30<enter> to disable zone 3.
4. Type OE40<enter> to disable zone 4
5. Verify that the correct zones are enable by typing OE<enter>. The following screen will appear:
 Zone1 Enabled
 Zone2 Enabled
 Zone3 Disabled
 Zone4 Disabled

Program Ramping Temperatures

Channel 1
1. Type CD1<enter> to make channel 1 active. You will see:
 Active Zone set to 1
2. To set the temperature of state 1 for channel 1, type SS1<enter>. You will be prompted to enter the desired values. (Current values are shown in the brackets.)
 Enter Zone 1, State 1 Parameters:
 Enter Temperature [40]: 40<enter>
 Hold Time [10]: 20<enter>
3. To set the temperature of state 2 for channel 1, type SS2<enter>, and type the desired values on the appropriate line.
 Enter Zone 1, State 2 Parameters:
 Enter Temperature [350]: 350<enter>
 Hold Time [50]: 50<enter>
 Ramp Rate [1]: 750<enter>
 Enabled [1]: 1<enter>

Channel 2
1. Type CD2<enter> to make channel 2 active. You will see:
 Active Zone set to 2
2. To set the temperature of state 1 for channel 2, type SS1<enter>. You will be prompted to enter the desired values.
 Enter Zone 2, State 1 Parameters:
 Enter Temperature [40]: <enter> (accept the current value)
 Hold Time [10]: 20<enter>
3. To set the temperature of state 2 for channel 2, type SS2<enter>, and type the desired values on the appropriate line.
 Enter Zone 2, State 2 Parameters:
 Enter Temperature [250]: <enter>
 Hold Time [30]: 40<enter>
 Ramp Rate [400]: 750<enter>
 Enabled [400]: 1<enter>
Verify Temperature Program

Channel 1
To verify the programming for channel 1, type ES1<enter>. You will see a screen like this, which should be an accurate reflection of the data entered:

<table>
<thead>
<tr>
<th>Zone 1 Temperature Program:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Time</td>
<td>Temp</td>
<td>Rate</td>
<td>Enable</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>40</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>350</td>
<td>750</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Channel 2
To verify the programming for channel 2, type ES2<enter>. Once again, you will see the screen verifying the data you have entered:

<table>
<thead>
<tr>
<th>Zone 2 Temperature Program:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Time</td>
<td>Temp</td>
<td>Rate</td>
<td>Enable</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>40</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>250</td>
<td>450</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Saving the Program
Once the parameters are verified, type WP<enter> to save the program.

Verify Output Mapping
Type OM<enter> to verify the channel outputs, which will be similar to what is shown below. If this needs to be altered for any reason, consult VICI technical support.

Controller Input - Output Mapping:
Zone 1: mapped to Wire-Sensing Input
Zone 2: mapped to Thermal Sense 2
Zone 3: mapped to Thermal Sense 3
Zone 4: mapped to Thermal Sense 4

Start Logging
Type L+<enter> to start data logging. You will see information similar to what is shown below. The logging data is explained on page 23.

0:C1U: 0.000, 31.668, 2.20;C2U: 0.00, 25.70, 2.20;
1:C1U: 0.000, 31.669, 2.20;C2U: 0.00, 25.69, 2.20;
2:C1U: 0.000, 31.668, 2.20;C2U: 0.00, 25.70, 2.20;
3:C1U: 0.000, 31.668, 2.20;C2U: 0.00, 25.70, 2.20;
4:C1U: 0.000, 31.668, 2.20;C2U: 0.00, 25.71, 2.20;
5:C1U: 0.000, 31.668, 2.20;C2U: 0.00, 25.71, 2.20;
Turn On (Initialize) the Active Zones

To turn on the active zones and bring them to their starting temperature (State 1) type `Z+<enter>`. You will see something similar to the data below, indicating the temperatures reaching the "ready" condition.

```
1:C1N:  31.073, 31.072, 2.01;  C2N:  8.15,  25.43,  3.71;
2:C1N:  31.324, 31.245, 11.64; C2N: 25.46, 25.57, 10.34;
3:C1N:  35.676, 35.289, 18.05; C2N: 25.38, 25.46, 11.36;
4:C1N:  39.819, 40.017,  6.91;  C2N: 26.44, 26.20, 21.67;
5:C1N:  40.000, 40.017,  4.86;  C2N: 29.61, 28.97, 33.66;
6:C1N:  40.000, 40.005,  4.23;  C2N: 35.27, 35.60, 15.83;
7:C1N:  40.000, 40.003,  3.81;  C2N: 38.80, 39.43, 12.37;
8:C1N:  40.000, 40.001,  3.62;  C2N: 39.78, 39.69, 11.68;
9:C1N:  40.000, 40.001,  3.53;  C2N: 40.00, 40.27,  1.70;
10:C1N: 40.000, 40.000,  3.46;  C2N: 39.92, 40.13,  1.43;
11:C1N: 40.000, 40.000,  3.39;  C2N: 40.00, 40.07,  1.70;
12:C1N: 40.000, 40.000,  3.36;  C2N: 39.96, 40.97,  9.71;
13:C1N: 40.000, 40.000,  3.36;  C2N: 40.00, 40.04,  3.76;
14:C1N: 40.000, 40.000,  3.35;  C2N: 39.98, 40.87,  8.70;
15:C1N: 40.000, 40.000,  3.38;  C2N: 40.00, 40.02,  5.07;
16:C1N: 40.000, 40.001,  3.27;  C2N: 40.00, 39.99, 8.16;
17:C1N: 40.000, 40.000,  3.29;  C2N: 40.00, 40.01,  5.82;
18:C1N: 40.000, 40.000,  3.33;  C2N: 40.00, 40.00,  7.74;
19:C1N: 40.000, 40.000,  3.26;  C2R: 40.00, 40.00,  6.33;
20:C1N: 40.000, 40.000,  3.36;  C2R: 40.00, 40.00,  7.58;
```

Start the Program

To start the program on all active zones, type `GOA<enter>`.

```
1:C1H:  40.000, 40.000,  3.40;  C2H: 40.00, 40.01,  7.03;
2:C1H:  40.000, 40.000,  3.39;  C2H: 40.00, 40.00,  7.35;
3:C1H:  40.000, 40.000,  3.34;  C2H: 40.00, 40.00,  6.95;
4:C1H:  40.000, 40.000,  3.31;  C2H: 40.00, 40.00,  7.36;
5:C1H:  40.000, 40.000,  3.38;  C2H: 40.00, 40.01,  6.46;
6:C1H:  40.000, 40.000,  3.35;  C2H: 40.00, 40.00,  7.04;
7:C1H:  40.000, 40.000,  3.35;  C2H: 40.00, 40.00,  6.95;
8:C1H:  40.000, 40.000,  3.33;  C2H: 40.00, 40.00,  7.20;
9:C1H:  40.000, 40.000,  3.33;  C2H: 40.00, 39.99,  7.51;
10:C1A: 40.000, 40.000,  3.63;  C2A: 40.00, 40.01,  7.35;
11:C1A: 46.282, 45.600, 31.27; C2A: 43.13, 41.55, 42.56;
12:C1A: 58.794, 58.623, 30.90; C2A: 49.80, 51.03, 14.42;
13:C1A: 71.306, 71.157, 32.86; C2A: 56.48, 55.50, 40.42;
14:C1A: 83.817, 83.713, 35.16; C2A: 63.15, 63.73, 29.22;
15:C1A: 96.329, 96.251, 36.96; C2A: 69.82, 69.32, 40.04;
16:C1A: 108.840, 108.798, 38.49; C2A: 76.50, 76.95, 29.55;
17:C1A: 121.352, 121.326, 41.33; C2A: 83.17, 82.92, 39.60;
18:C1A: 133.863, 133.834, 43.14; C2A: 89.85, 90.02, 32.87;
19:C1A: 146.375, 146.347, 44.74; C2A: 96.52, 96.46, 38.86;
20:C1A: 158.887, 158.858, 46.29; C2A:103.19,103.25, 35.13;
21:C1A: 171.398,171.370, 47.98; C2A:109.87,109.89, 38.60;
22:C1A: 183.910,183.884, 49.60; C2A:116.54,116.52, 37.09;
```
Interpreting the Data Log

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>CURRENT TEMP</th>
<th>PWM COUNT (%)</th>
<th>TIME (SECONDS)</th>
<th>CHANNEL FLAG*</th>
<th>TARGET TEMP*</th>
<th>ZONE 1 SET POINT IS REACHED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C1N</td>
<td>31.073</td>
<td>C2N: 8.15</td>
<td>31.072</td>
<td></td>
<td>2.01</td>
<td>31.324</td>
</tr>
<tr>
<td>2:C1N</td>
<td>31.324</td>
<td></td>
<td>31.245</td>
<td></td>
<td>11.64</td>
<td>35.676</td>
</tr>
<tr>
<td>3:C1N</td>
<td>35.676</td>
<td></td>
<td>35.289</td>
<td></td>
<td>18.05</td>
<td>39.819</td>
</tr>
<tr>
<td>4:C1N</td>
<td>39.819</td>
<td></td>
<td>40.017</td>
<td></td>
<td>6.91</td>
<td>40.000</td>
</tr>
<tr>
<td>5:C1N</td>
<td>40.000</td>
<td></td>
<td>40.017</td>
<td></td>
<td>4.86</td>
<td>40.000</td>
</tr>
<tr>
<td>6:C1N</td>
<td>40.000</td>
<td></td>
<td>40.005</td>
<td></td>
<td>4.23</td>
<td>40.000</td>
</tr>
<tr>
<td>7:C1N</td>
<td>40.000</td>
<td></td>
<td>40.003</td>
<td></td>
<td>3.81</td>
<td>40.000</td>
</tr>
<tr>
<td>8:C1N</td>
<td>40.000</td>
<td></td>
<td>40.001</td>
<td></td>
<td>3.62</td>
<td>40.000</td>
</tr>
<tr>
<td>9:C1N</td>
<td>40.000</td>
<td></td>
<td>40.001</td>
<td></td>
<td>3.53</td>
<td>40.000</td>
</tr>
<tr>
<td>10:C1N</td>
<td>40.000</td>
<td></td>
<td>40.000</td>
<td></td>
<td>3.46</td>
<td>40.000</td>
</tr>
<tr>
<td>11:C1N</td>
<td>40.000</td>
<td></td>
<td>40.000</td>
<td></td>
<td>3.39</td>
<td>40.000</td>
</tr>
<tr>
<td>12:C1N</td>
<td>40.000</td>
<td></td>
<td>40.000</td>
<td></td>
<td>3.36</td>
<td>40.000</td>
</tr>
<tr>
<td>13:C1R</td>
<td>40.000</td>
<td></td>
<td>40.000</td>
<td></td>
<td>3.36</td>
<td>40.000</td>
</tr>
<tr>
<td>14:C1R</td>
<td>40.000</td>
<td></td>
<td>40.000</td>
<td></td>
<td>3.35</td>
<td>40.000</td>
</tr>
<tr>
<td>15:C1R</td>
<td>40.000</td>
<td></td>
<td>40.000</td>
<td></td>
<td>3.35</td>
<td>40.000</td>
</tr>
<tr>
<td>16:C1R</td>
<td>40.000</td>
<td></td>
<td>40.000</td>
<td></td>
<td>3.27</td>
<td>40.000</td>
</tr>
</tbody>
</table>

Extracted Text

Calculating a Target Temperature

In typical temperature controllers, there is no control over how the temperature gets to the set point. By contrast, the FTP guides the temperature to the set point, calculating a target temperature approximately 200 times per second.
Appendix C: Part Number Examples

The FTP-200 allows for multiple configurations. The maximum number of channels is four, and at least one channel, the main channel, needs to be present. The following figure explains how the part numbers are formed.

For example, the standard FTP has the following part number:

FTP - 200 - 1112

- **Power cord**
 - 0 - US
 - 1 - EU
 - 2 - No cord

- **Enclosure and power supply**
 - 0 - Enclosure, power supply

- **Module 2**
 - 1 - Thermocouple

- **Module 3**
 - 1 - Thermocouple

- **Module 4**
 - 2 - RTD 100
This part number describes an OEM unit for use in the US, with a power supply and single module:

FTP - 203-1000

- **Power cord**
 - 0 - US

- **Enclosure and power supply**
 - 3 - No enclosure, power supply

- **Module 2**
 - 0 - No module

- **Module 3**
 - 0 - No module

- **Module 4**
 - 0 - No module

A slightly more complex domestic OEM unit adds two more modules.

FTP - 203-1110

- **Power cord**
 - 0 - US

- **Enclosure and power supply**
 - 3 - No enclosure, power supply

- **Module 2**
 - 1 - Thermocouple

- **Module 3**
 - 1 - Thermocouple

- **Module 4**
 - 0 - No module
Finally, an end user in Europe might order a fully-configured unit.

```
FTP - 210 - 1112
```

- **Power cord**
 - 0 - EU

- **Enclosure and power supply**
 - 0 - Enclosure, power supply

- **Module 2**
 - 1 - Thermocouple

- **Module 3**
 - 1 - Thermocouple

- **Module 4**
 - 2 - RTD 100
Warranty

This Limited Warranty gives the Buyer specific legal rights, and a Buyer may also have other rights that vary from state to state. For a period of 365 calendar days from the date of shipment, Valco Instruments Company, Inc. (hereinafter Seller) warrants the goods to be free from defect in material and workmanship to the original purchaser. During the warranty period, Seller agrees to repair or replace defective and/or nonconforming goods or parts without charge for material or labor, or, at the Seller’s option, demand return of the goods and tender repayment of the price. Buyer’s exclusive remedy is repair or replacement of defective and nonconforming goods, or, at Seller’s option, the repayment of the price.

Seller excludes and disclaims any liability for lost profits, personal injury, interruption of service, or for consequential incidental or special damages arising out of, resulting from, or relating in any manner to these goods

This Limited Warranty does not cover defects, damage, or nonconformity resulting from abuse, misuse, neglect, lack of reasonable care, modification, or the attachment of improper devices to the goods. This Limited Warranty does not cover expendable items. This warranty is VOID when repairs are performed by a nonauthorized service center or representative. For information about authorized service centers or representatives, write Customer Repairs, Valco Instruments Company, Inc, P.O. Box 55603, Houston, Texas 77255, or phone (713) 688-9345. At Seller’s option, repairs or replacements will be made on site or at the factory. If repairs or replacements are to be made at the factory, Buyer shall return the goods prepaid and bear all the risks of loss until delivered to the factory. If Seller returns the goods, they will be delivered prepaid and Seller will bear all risks of loss until delivery to Buyer. Buyer and Seller agree that this Limited Warranty shall be governed by and construed in accordance with the laws of the State of Texas.

The warranties contained in this agreement are in lieu of all other warranties expressed or implied, including the warranties of merchantability and fitness for a particular purpose.

This Limited Warranty supercedes all prior proposals or representations oral or written and constitutes the entire understanding regarding the warranties made by Seller to Buyer. This Limited Warranty may not be expanded or modified except in writing signed by the parties hereto.